INFLUENCE OF CHRONIC EXPOSURE TO WEAK VARIABLE MAGNETIC FIELD ON ANTIOXIDANT ACTIVITY IN RATS WITH EXPERIMENTAL INFLAMMATION. G. Cieslar¹, J. Mrowiec¹, J. Zalejska-Fiolka², E. Birkner², S. Kasperczyk², A. Sieron¹. ¹Chair and Clinic of Internal Diseases, Angiology and Physical Medicine, Silesian Medical Univ, PL-41902 Bytom, Poland, ²Chair and Dept of Biochemistry, Silesian Medical Univ, PL-41808 Zabrze, Poland.

Objectives The aim of the study was to estimate the influence of chronic exposure to weak variable magnetic field used in magneto-stimulation on activity of some antioxidant enzymes in rats with experimental inflammation. Methods: Experimental material consisted of 128 male Wistar rats weighting 180-200 g. Weak variable magnetic field of saw-like shape of impulse, at a frequency of basic impulse 180-195 Hz and induction of 60 µT generated by device for magneto-stimulation Viofor JPS (Poland) basing on ion cyclotron resonance phenomenon was used. All animals were randomly divided into 4 groups (32 animals each). In first group whole body exposure to magnetic field lasting 36 minutes daily for 14 consecutive days was made. In second - control group sham-exposure without generating magnetic field inside of applicator lasting 36 minutes daily for 14 consecutive days was made. Rats in third group were injected with 50 ul of 5% solution of formaldehyde in region of right hip and after 24 hours were subjected to the same exposure cycle as in first group. The animals in fourth - control group were also injected with 50 µl of 5% solution of formaldehyde in region of right hip and then after 24 hours were subjected to the same sham-exposure cycle as in second group. In all groups at 7th and 14th day of repeated exposures or sham-exposures and at 7th and 14th day after the end of a cycle of exposures every time a part of animals (8 rats from each group) was exsanguinated in ether narcosis. In obtained blood and hemolysates of erythrocytes samples contents of some antioxidant activity indicators: activity of catalase (CAT), glutathione peroxidase (GPX) and superoxide dysmutase (SOD) in erythrocytes, activity of isoenzymes of superoxide dysmutase (Mn-SOD and ZnCu-SOD)) in serum as well as serum concentration of malondialdehyde (MDA) was determined by means of spectrophotometric and kinetic methods. In the statistical evaluation ANOVA analysis with subsequent post-hoc Mann-Whitney's U test were used. Summary of results: The activities of antioxidant enzymes as well as serum malondialdehyde concentration in particular groups of rats are presented in table 1. In magnetic field-exposed group a significant decrease in activity of most of analyzed antioxidant enzymes both in erythrocytes and serum during exposure cycle was observed as compared to a group of rats with experimental inflammation, in which these activities were significantly increased comparing to control group. Besides in both magnetic field-exposed groups a significant decrease in malondialdehyde serum concentration during exposure cycle was obtained. Conclusion: Chronic exposure to weak variable magnetic field used in magnetostimulation basing on magnetic resonance phenomenon causes a beneficial effect antioxidant reactions in course of experimental inflammation in living organisms.

	ivity of some antioxidate in all groups of rats /td>				
Parameter	Group	Day of exposure or sham-exposure			
		7 day of exposure cycle	avnocura	1 -	he 14 day after the of end of exposure cycle
Activity of CA erythrocytes	T in	•		·	•

[IU/mgHb]	Control	197,3	168,9	152,0	158,4
	Inflammation	142,4**	117,8**	211,1	102,9**
	Magnetic field	178,8	112,3**	105,5*	88,0**
	Magnetic field + inflammation	177,9	118,5**	115,3**	97,6**
Activity of GPX in erythrocytes [IU/gHb]	Control	139,7	79,6	118,2	60,2
	Inflammation	271,2**	164,4**	138,3	73,2
	Magnetic field	141,3	107,0*	103,1	118,7**
	Magnetic field + inflammation	102,6	117,6**	118,2	138,2**
Activity of SOD in erythrocytes					
[NU/gHB]	Control	135,7	132,5	122,0	285,6
	Inflammation	117,3	99,6	185,9	141,4**
	Magnetic field	97,1	169,9	220,7*	172,5**
	Magnetic field + inflammation	55,9	168,6	220,9*	152,1**
Activity of Mn-SOD in serum [NU/ml]	Control	8,2	12,0	13,2	7,7
	Inflammation	5,8*	9,3	3,2**	4,4
	Magnetic field	5,4*	8,6	3,6**	4,9
	Magnetic field + inflammation	3,4*	5,7**	3,0**	4,4
Activity of ZnCu- SOD in serum [NU/ml]	Control	19,2	15,4	18,4	21,7
	Inflammation	24,3*	20,4	24,7*	22,5
	Magnetic field	21,9	21,9	26,1*	26,1*
	Magnetic field + inflammation	20,0	22,0	27,5*	28,6*
Concentration of MDA [fÝmol/l]	Control	6,3	6,2	4,1	5,0
	Inflammation	4,9	4,3	3,7	3,4*
	Magnetic field	3,0**	2,9**	3,3	4,6
	Magnetic field + inflammation	3,9**	2,9**	3,5	4,6