Sektion 07, Ernährungstherapie

07.01 Diätetik und Ernährungstherapie
im Überblick
S. SCHMIDT

07.02 Ernährungsphysiologische Grundlagen und
Prinzipien vollwertiger Ernährung
H. OBERRITTER

07.04 Ernährungstherapie bei Hypertonie
und Nierenerkrankung
H. QUIRIN

07.05 Vollwert-Ernährung
H. QUIRIN

07.07 Fasten/Fastentherapie
C. LEITZMANN, G. SCHÖNBERGER

07.08 Propylaxe und Therapie mit Fischölsäuren
O. ADAM

07.09 Ernährungstherapie bei Stoffwechselstörungen
H. LÜTZNER

07.10 Ernährungsempfehlungen für Diabetiker
F. WILHELM DE TOLEDO

07.11 Ernährungsberatung im medizinischen Umfeld
T. WEUSTENFELD

07.12 Gesundheitliche Wirkungen von Nahrungsmittel-
inhaltsstoffen
C. LEITZMANN

Sektion 08, Phytotherapie

08.01 Phytotherapie im Überblick
B. ROSSLER, R. SALLER

08.02 Phytotherapie: Allgemeine Grundlagen
R. HANSEL

08.03 Geschichte der Phytotherapie
J. MAYER

08.04 Johanniskraut (Hypericum)
B. VESTER

08.05 Baldrian (Valeriana)
H. D. PETERS

Sektor: Magnetfeldtherapie

06.08 Teil 1: Geschichtlicher Hintergrund
und allgemeine Grundlagen
F. REINISCH

Teil 2: Der biologische Wirkungsmechanismus
elektromagnetischer Felder
M. GRESZ-BRISON UND A. SIERON
R. BRANDMAIER

07.05 Gutachten: Magnetfeldtherapie
8.06 Knoblauch (Allium sativum)
Gutachten: Vorbereitung s. Kurzinformation
C. Fassold, J. Grünwald
A. Walper
W. Hübbe, D. Laudahn, V. Schulz
8.07 Fächerblattpfeffer (Gingko biloba)
Gutachten: Vorbereitung
s. Kurzinformation
J. Müller
8.08 Herbstzeitlose (Colchicum autumnale)
Gutachten: Colchicin/akuter Gichtanfall;
familiäres Mittelnervenfieber
J. Windeler
P. Wenzel
R. Holle
8.09 Artischocke (Cynara)
Gutachten: Artischocke
D. Meichart
J. Windeler
D. Löwe
8.10 Brennnessel (Urtica dioica, Urtica urens)
Teil 1: Brennnesselwurzel (Urticae radix)
Gutachten: Brennnesselwurzel/BPH
P. Wenzel
R. Brandmaier
8.11 Goldrute (Solidago vagaerea)
Gutachten: Goldrute/akuter Harnwegsinfekt
R. Brandmaier
G. Schmitz
8.12 Mariendistel (Silybum marianum)
Gutachten: Mariendistel samen/chronische Leberschäden
R. Holle
D. Meichart
J. Windeler
D. Löwe
8.13 Echinacea (Sonnenhut)
Gutachten: Echinacea präparationen
R. Holle
8.14 Rosskastaniensamen (Hippocastani semen)
Gutachten: Rosskastaniensamenextrakt
D. Meichart
J. Windeler
D. Löwe
8.15 Weiβdorn (Crataegus laevigata,
Crataegus monogyna) Weiβdornblätter mit
Blüten (Crataegus folium cum flore)
Gutachten: Weiβdornextrakte
R. Holle
8.16 Oleander (Nerium oleander L., Oleandri folium)
Gutachten: Oleander bei Herzinsuffizienz
D. Löwe
R. Brandmaier
8.17 Vitis agnus castus (Kernschlämme, Mönchspfeffer)
Gutachten: Vitis agnus castus
D. Löwe
S. Lange
8.18 Flohsamen (Fssyllii semen)
Indische Flohsamen/-schalen
(Plantaginis ovatae semen/testa)
Gutachten: Flohsamen und Flohsamenschalen
K. Kraft
R. Holle
8.19 Cimicifuga racemosa (Traubenmilchblüte, Wanzenkraut)
Gutachten: Cimicifuga Racemosa
bei klinischen Beschwerden
A.-M. Beer
K. Meyer
B. Uhlke
8.20 Arnika (Arnica, Bergwolfskraut)
Gutachten: Arnika
H. Uppen, B. Beckmann
K. Unnebrink
D. Löwe
J. Windeler
R. Brenke, M. Dannler
8.21 Teebaum-Öl (Melaleuca alternifolia)
Gutachten: Teebaum-Öl
D. Löwe
8.22 Kava-Kava-Wurzelstock (Piper methysticum)
Gutachten: Kava-Kava
J. Windeler
8.23 Apitherapie im Überblick
Sektion 06,
Elektro- und
Ultraschalltherapie

EDITOR: K. L. RESCH

06.01 Überblick siehe Kapitel 02.01
 »Physikalische Therapie im Überblick«
(Stand: Juli '92)

06.02 Elektrotherapie: Allgemeine Grundlagen
von E. Preisinger und O. Schuhfried
(Stand: November '95)

06.03 Zur Geschichte der Elektrotherapie
und ihrer Beziehung zum Heilmagnetismus
von H. SCHOTT
(Stand: März '96)

06.04 Nieder- und Mittelfrequenztherapie
Teil 1: Elektrostimulation bei Schmerzen
von M. I. KORPAN und V. FIALKA
(Stand: März '97)
Teil 2: TENS
von R. POTHEMANN
(Stand: Juli 2000)

06.05 Elektrostimulation der Muskulatur mit
nieder- und mittelfrequenten Strömen
von T. PATERNOSTRO-SLUGA
(Stand: November '96)
06.06 **Hochfrequenztherapie**
von E. M. Uher, P. Nicolakis, K. Kerschan
und A. H. Ghanem,
(Stand: April '98)

06.07 **Ultraschalltherapie**
von G. Effenbichler
(Stand: März '97)
Gutachten zum Stand des Nachweises der Wirksamkeit einer Ultraschalltherapie, Teil 1 (ohne Berücksichtigung der Indikationen entzündliche oder degenerative Gelenkerkrankungen)
von J. Windeler
(Stand: November '99)
Gutachten zum Stand des Nachweises der Wirksamkeit einer Ultraschalltherapie, Teil 2
von J. Windeler
(Stand: April '98)

06.08 **Magnetfeldtherapie**
Teil 1: Geschichtlicher Hintergrund und allgemeine Grundlagen
von F. Reinsch
(Stand: Dezember 2002)
Teil 2: Der biologische Wirkungsmechanismus elektromagnetischer Felder
von M. Griesz-Brisson und A. Sierocki
(Stand: April 2004)
Gutachten: Die Wirksamkeit der Therapie mit pulsierenden Magnetfeldern bei orthopädischen Erkrankungen
von R. Brandmaier
(Stand: April 2004)
Magnetfeldtherapie
Teil 2: Der biologische Wirkungsmechanismus elektromagnetischer Felder

MARGARETA GRIESE-BRISON UND ALEKSANDER SIERÖN

Dieser Beitrag zeigt Ihnen:
- welche elektromagnetischen Kräfte natürlicherweise auf alle lebenden Organismen einwirken,
- wie elektromagnetische Felder durch technische Geräte in der Umwelt vervielfacht werden,
- wie elektromagnetische Felder biophysikalisch auf Zellvorgänge wirken,
- welche biologischen Wirkungen im menschlichen Organismus sich hieraus ergeben können,
- welche Indikationen für die Magnetfeldtherapie in Betracht gezogen werden können,
- potenzielle Nebenwirkungen und Kontraindikationen und
- medizinökonomische Überlegungen auch zur Wirtschaftlichkeit.
Um die Wirkung von magnetischen und elektromagnetischen Feldern auf biologische Systeme zu analysieren und zu verstehen, wollen wir einige grundlegende Fragen untersuchen:

⇒ Welches sind die wichtigsten Parameter elektromagnetischer Felder?
⇒ Welches sind die Parameter des Erdmagnetens?
⇒ Was sind elektrische, magnetische und elektromagnetische Felder?
⇒ Was ist der Unterschied zwischen einem statischen und einem variablen Magnetfeld?
⇒ Was ist Elektrosmog?
⇒ Welchen naturwissenschaftlichen Erklärungen gibt es für den biologischen Wirkungsmechanismus der Magnetfeldtherapie?
⇒ Welches sind die physiologischen und welches die pathophysiologischen Auswirkungen des Magnetfeldes?
⇒ Welche sind die Indikationen und die Anwendungsgebiete die sich aus dem Wirkungsmechanismus ergeben?
⇒ Welches sind die realen und die potenziellen Nebenwirkungen und Kontraindikationen, die sich aus dem Wirkungsmechanismus ergeben?

Parameter elektromagnetischer Felder

Die wichtigsten Parameter elektromagnetischer Felder sind

⇒ die magnetische Flussdichte oder Induktion B in Gauß oder Tesla
 ($1 \text{ G} = 10^{-4} \text{ Tesla}$),
⇒ die Spannung E, in V / m
⇒ die Frequenz F, in Hertz.

Welches sind die magnetischen Parameter des Erdmagnetens?

Definition elektrischer, magnetischer und elektromagnetischer Felder

In Abhängigkeit von der Zeit, Induktion and Feldstärke werden die Felder eingeteilt in
⇒ elektrische,
⇒ magnetische und
⇒ elektromagnetische.

Das elektrische Feld ist durch seine elektrische Feldstärke E (Volt / Meter, V / m) und das magnetische Feld durch seine magnetische Feldstärke H (Ampere / Meter, A / m) charakterisiert. Elektromagnetische Felder welche eine geringere Spannung als die Erdspannung haben, werden als magnetische Felder bezeichnet. Elektromagnetische Felder mit hoher Spannung von $> 5000 V / m$ und einer niedrigen Induktion, werden einfach elektrische Felder genannt. Weiterhin müssen wir zwischen Feldern mit hoher und Feldern mit niedriger Induktion unterscheiden. Die Induktion hängt nicht von der Spannung, sondern vielmehr von der Stromstärke ab. Magnetische Felder von hoher Induktion liegen zwischen $0,1-15 mT$ und solche von niedriger Induktion liegen zwischen 10-100 μT. Die magnetische Induktion ist das Produkt der magnetischen Feldstärke, der magnetischen Durchlässigkeit des Vakuums und der relativen Durchlässigkeit:

$$B = \mu \times \mu_0 \times H$$

μ = relative Permeabilität des Vakuums,
μ_0 = magnetische Permeabilität des Vakuums, H = magnetische Feldstärke.

Statische und variable Magnetfelder

Reine elektrische oder reine magnetische Felder können nur in konstanter Form vorkommen, ohne Änderung im Zeitverlauf. Ändert sich ein elektrisches oder ein magnetisches Feld mit der Zeit, entsteht ein elektromagnetisches Feld. Elektromagnetische Felder werden durch die Maxwell Gleichung charakterisiert: Wechselnde magnetische Felder entstehen entlang wechselnder elektrischer Felder und umgekehrt, wechselnde elektrische Felder entstehen entlang wechselnder magnetischer Felder. In der medizinischen Literatur finden wir sehr häufig den Begriff des wechselnden magnetischen Feldes. Dies ist eine Vereinfachung für so genannte extremely low frequency magnetic fields (ELF-MF), wenn die Parameter des elektrischen Feldes kleiner / gleich dem Erdmagnet und die Intensität des magnetischen Feldes größer / gleich dem Erdmagneten sind (30-70 μT).

Was ist Elektrosmog?

Wie Tabelle 1 zeigt, ist der Mensch ständig sowohl von stabilen als auch von wechselnden elektromagnetischen Feldern umgeben. Die Felder in nächster Umgebung des Menschen sind jedoch meist nicht mehr natürlichen Ursprungs, sondern das Beiprodukt technischer Geräte und Installationen aus Haushalt und In-
ductric. Sie können aber auch ganz gezielt z. B. in der Medizin, für diagnostische oder therapeutische Zwecke hergestellt werden (etwa für MRI, Magnet-Reso-
nanz-Imaging in der Diagnostik im Millibi-Teslabereich oder das pulsierende Mag-
netfeld in der Therapie, im Pico- bis Milliteslabereich). In der Mobilfunktech-
nologie werden vor allem Hochfrequenzfelder eingesetzt. Die deutsche Strahlen-
schutzkommission hat die Grenzwerte für
Hochfrequenzstrahlung bei einer spezifi-
schen Absorptionsrate (SAR) von 0,08 W/kg für Ganzkörperbelastung festge-
setzt. Für ELF-Felder stellt die DSSK fest: »die Quantenenergie der ELF ist so ge-
ring, dass eine Ionisierung von Atomen und Molekülen aus physikalischen Grün-
den nicht möglich ist«. Dass dies nicht so vereinfacht dargestellt werden kann, wer-
den wir im weiteren Verlauf zeigen. Da wir im therapeutischen Einsatz elektro-
magnetischer Felder vor allem dieses Frequenzspektrum nutzen, sind diese Felder
der Hauptgegenstand unserer Fragestel-
lungen und unserer Untersuchungen.
Wie wir zeigen werden, hat dieser Fre-
quenzbereich eine sehr vielschichtige und komplexe Auswirkung auf biologische
Systeme. Diese Aussage zeigt die Dringt-
llichkeit einer gezielten, systematischen,
fachübergreifenden Forschung auf diesem
Gebiet. Im Informationszeitalter naturlicher
elektromagnetischer Felder hat sich Leben
entwickelt. Für den Zivilisationsmenschen
werden diese natürlichen Informationen

jedoch von zwei wesentlichen Faktoren
beeinflusst: durch unseren Lebensstil sind
wir nur noch zu einem äußerst geringen
Tageszeitanteil diesen natürlichen Feldern
ausgesetzt, z. B. durch Bewegung in so
genannter unberührter Natur und zum
deren durch die in den letzten Jahr-

dezehnten massive Zunahme künstlicher
elektromagnetischer Felder in unserer
nächsten Alltagsumgebung. Wir sehen,
dass einerseits ELF-MF therapeutisch
empfohlen und mit großem Erfolg einge-
setzt werden und dass andererseits immer

mehr Menschen über Beschwerden kla-
gen, die u. a. mit ›Elektrosensibilität‹ er-
klärt werden.

Somit ergibt sich die Frage nach dem
Elektrosmog. Jedes Gerät, welches elektris-
chen Wechselstrom nutzt, erzeugt gemäß
der Maxwell-Gleichung ein magnetisches
Feld. Daher sind alle unsere Haushaltsgerä-
te, Spannungsleitungen, Industrieanlagen
und Mobiltelefone Generator von elek-
tromagnetischen Feldern. Die Intensität
künstlich induzierter magnetischer Felder
ist inzwischen um ein Vielfaches höher als
das Erdmagnetfeld selbst. Die Untersuchung
der Auswirkungen dieser künstlichen
elektromagnetischen Felder auf biologi-
sche Systeme ist ein wachsendes For-
schungsgebiet. Institutionen wie WHO
und FDA setzen sich mit dieser Frage
auseinander, beginnend mit submolekula-
rer Grundlagenforschung bis hin zu kli-
schen Untersuchungen. Wie komplex
und kontrovers die Thematik, aber auch
<table>
<thead>
<tr>
<th>Feldquelle</th>
<th>Frequenz</th>
<th>Induktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erdmagnet</td>
<td>konstant</td>
<td>30–70 µT</td>
</tr>
<tr>
<td>Haushalt</td>
<td>50 / 60 Hz</td>
<td>10–100 µT</td>
</tr>
<tr>
<td>Hochspannungsleitung</td>
<td>50 / 60 Hz</td>
<td>10–100 µT</td>
</tr>
<tr>
<td>– ohne Stromfluss</td>
<td>konstant</td>
<td>10–25 µT</td>
</tr>
<tr>
<td>Verkehrsmittel</td>
<td>konstant</td>
<td>2–100 mT</td>
</tr>
<tr>
<td>Medizin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Magnet Resonanz Imaging (MRI)</td>
<td>konstant</td>
<td>0,15–3 T</td>
</tr>
<tr>
<td>– Prothesen</td>
<td>konstant</td>
<td>0,1 T</td>
</tr>
<tr>
<td>– Magnetotherapie</td>
<td>konstant</td>
<td>0,1 T</td>
</tr>
<tr>
<td>Magnetostimulation</td>
<td>1–75 Hz</td>
<td>1–30 mT</td>
</tr>
<tr>
<td></td>
<td>1–3000 Hz</td>
<td>1 µT–100 µT</td>
</tr>
<tr>
<td>Elektrolyse</td>
<td>konstant</td>
<td>10–30 mT</td>
</tr>
<tr>
<td>Hochvoltagelektrotekologie</td>
<td>konstant</td>
<td>1–100 mT; periodisch 0,6–1,5 T</td>
</tr>
<tr>
<td>Schalzöfen</td>
<td>50–60 Hz</td>
<td>1–130 mT</td>
</tr>
<tr>
<td>Schweizgeräte</td>
<td>1–1000 kHz</td>
<td>0,1–100 mT</td>
</tr>
<tr>
<td>Telekommunikation</td>
<td>10–100 kHz</td>
<td>1–50 µT</td>
</tr>
<tr>
<td>persönliche Pilease</td>
<td>6–1000 kHz</td>
<td>0,1 mT</td>
</tr>
</tbody>
</table>

wie groß das Interesse ist, zeigt die Daten- und Informationsflut der letzten Jahre. Inzwischen wurden weltweit über 20.000 klinische Studien durchgeführt. Die Ergebnisse und Aussagen sind sehr widersprüchlich und inzwischen selbst für Experten kaum durchschaubar. Was eine elektromagnetische Welle zum pathogenen und was zum salutogenen Faktor macht, ist eine der dringlichsten Fragen unserer Zeit. Solange wir diesbezüglich keine Klarheit haben und in der Medizin vor allem das Gebot, keinen Schaden anzurichten herrscht, müssen die elektromagnetische Umweltverschmutzung und die so genannten vagabundierenden Felder, als potenzieller pathogener Faktor in Erwägung gezogen werden. Die eingehende Erforschung dieser Phänomene ist imperativ. Ihr muss kritischste Aufmerksamkeit zukommen. Wir müssen das Phänomen in seiner Komplexität erkennen, erforschen, erfassen, verstehen, nutzen und anwenden lernen.
Physikalische und biophysikalische Effekte von Magnetfeldern

Die gezielte Wirkung magnetischer Felder auf die unterschiedlichen Strukturen hat eine physikalische und eine biologische Komponente.

Physikalische Aspekte

Die Wirkungen von externen magnetischen Feldern basieren auf folgenden physikalischen Gesetzen:

Die Auswirkung der Lorentz-Kraft auf elektrisch geladene Teilchen

Die gesamte Physiologie und Biochemie der lebenden Materie beruht auf der Wechselwirkung von geladenen Teilchen. Auf ein Teilchen mit der Ladung \(Q \), das sich mit der Geschwindigkeit \(v \) in einem elektromagnetischen Feld bewegt, wirkt eine Kraft \(F \), die so genannte Lorentz-Kraft. Diese steht sowohl zu der momentanen Bewegungsrichtung des Teilchens, als auch zur Richtung des Feldes am Teilchenort senkrecht und kann daher an dem Teilchen keine mechanische Arbeit verrichten. Das geladene Teilchen bewegt sich im magnetischen Feld kreisförmig, schraubenförmig oder gerade. Dies hängt vom \(\alpha \)-Winkel des magnetischen Induktionsvektors ab (im rechten Winkel, 0–90° oder 90–180°). Magnetfelder können die geladenen Teilchen nicht beschleunigen, sie können sie jedoch ablenken und ihre Strahlung fokussieren. Als Lorentz-Kraft wird nur der Teil der Kraft bezeichnet, der von der magnetischen Flussdichte verursacht wird. Durch die Lorentz-Transformation geht jedoch ein rein magnetisches in ein elektromagnetisches Feld über. Auf der Lorentz-Kraft beruhen auch Phänomene wie die Ausbildung von Wirbelströmen, die Unipolarinduktion und der Hall-Effekt.

\[
F = Qv \times B
\]

\[
F = Q (E + v \times B)
\]

\(q = \text{Ladungsmenge}, v = \text{Ladungsgeschwindigkeit}, B = \text{Induktion}, E = \text{Spannung} \).

Der Einfluss auf Kurzkreisströme

\(\tau = B \times \mu \)

\(\tau = \text{Drehmoment der Einflusskräfte}, \mu = \text{magnetischer Dipolmoment des Kreises} \)

Die Ablenkung elektrischer Ladungen im ausgedehnten magnetischen Feld

\[
R = m \frac{v}{B q}
\]

\(R = \text{Kreisradius des Teilchens}, m = \text{Masse des Teilchens}, v = \text{Geschwindigkeit des Teilchens}, B = \text{Induktion}, q = \text{Ladung} \)

Der Hall-Effekt

Der Hall-Effekt besagt, dass in einem stromdurchflossenen Leiter, in dem senkrecht zur Stromrichtung ein magnetisches Feld wirkt, senkrecht zu den elektrischen und magnetischen Feldlinien durch die Lorentz-Kraft eine Spannungsdifferenz aufgebaut wird.

\[
U_H = A_H I B / d
\]
(\(U_\text{H}\) = Hall-Spannung, \(A_\text{H}\) = die material-
abhängige Hall-Konstante, \(I\) = Stromstärke, \(B\) = magnetische Induktion, \(d\) = die
Dicke [Feldrichtung] des Leiters)

Elektrisch geladene Teilchen können
also als Folge der Lorentz-Kraft und des
Hall-Effektes abgelenkt werden. Äußere
Kräfte können die Bewegungsrichtung
der Teilchen beeinflussen.

Ionen-Cyclotronen-Resonanz

Im Jahr 1985 zeigte Liboff, dass durch
Einwirkung von magnetischen Feldern
mit einer definierten Frequenz (16 Hz),
die Zellmembranpermeabilität für Ca-
Ionen beeinflusst wird. Dieser Effekt wird
von der Lorentz-Kraft induziert. Diese
Frequenz entspricht der Resonanzfre-
quenz des Ca-Ions und kann mit der
Tennant-Formel für Resonanzfrequenzen
errechnet werden,

\[
P_z = Q \frac{B}{2 \mu m}
\]

\((Q = \text{elektrische Ionenladung}, B = \text{mag-
netische Induktion}, m = \text{Masse des Ions},
\mu = \text{Drehmoment})\)

Das beobachtete Resonanzphänomen
wird als Ionen-Cyclotronen-Resonanz
(IKR) bezeichnet.

**Biophysikalische Aspekte
der Magnetfeldwirkung**

Die Physiologie ist nichts anderes als die
Antwort der lebenden Materie auf physi-
kalische Gesetze. Für die Wirkung mag-
netischer und elektromagnetischer Felder
auf die Physiologie müssen folgende bio-
physikalische Aspekte berücksichtigt wer-
den.

- Aktivität des nicht kompensierten
 magnetischen Spins paramagnetischer
 Teilchen, freier Radikale und diamag-
 netischer Moleküle: Von außen ein-
 wirkende magnetische Felder können
das magnetische Moment der Teil-
chen durch den nicht kompensierten
Spin der paramagnetischen Teilchen
verstärken. Sind diese Teilchen Teil
eines Coenzymes oder einer prostheti-
schen Gruppe, können hierdurch en-
ymatische Reaktionen beeinflusst
werden. Die Aktivierung diesen Ef-
fekts setzt eine definierte Induktions-
orschwelle des magnetischen Feldes vor-
aus, was zur Beschleunigung oder
Hemmung der Enzymaktivität führt.

- **Einfluss der Flüssigkristalle im Orga-
nismus als Bestandteile biologischer
Membranen**: Flüssigkristalle treten
fast nur in organischen Verbindungen
auf, deren Moleküle langgestreckt
und verhältnismäßig gerade sind und
einen starken elektrischen Dipolmo-
ment haben. Sie kommen in der neu-
matischen (fadenförmig, langge-
streckt, parallel zu einander ausge-
gerichtet und in Richtung ihrer Achse
frei verschiebaren), cholesterischen
(parallel zu einander ausgerichtete
Ebenen) oder in der smektischen
(senkrecht zu den monomolekularen
Strukturen ausgerichteter und nicht
verschiebbaren) Phase vor. Die bio-
chemischen Bestandteile der Zell-
membranen bestehen im Wesent-
lichen aus Flüssigkristallanteilen.
Bedingt durch ihr starkes Dipolmo-
ment, können Flüssigkristalle durch
externe elektromagnetische Felder be-
einflusst werden. Der Übergang der
Flüssigkristalle von einer in die andere
Phase, verändert ihre biologischen
Eigenschaften, z. B. die Lichtbre-
chung, -reflexion und -durchlässig-
keit. Dadurch verändert sich auch die
Permeabilität der Zellmembran.

- **Aktivität der Ionenverteilung**: Äußere
magnetische Felder bewirken in bio-
logischen Membranen das Auftreten
von Kräften, die der Membranspan-
nung vergleichbar sind. Dies führt zur
Änderung des Ionenflusses.

- **Einfluss von bewegten elektrischen
 Ladungen als Folge der Lorentz-Kraft
 und des Hall-Effektes**: Durch diesen
 Effekt kann die Informationsaufnah-
me verändert werden, indem die elek-
trische Ladung und die magnetische
Induktionsrichtung als Informations-
quelle gewertet werden.

- **Effekt auf den Wasserfüllungszu-
 stand des intra- und extrazellulären
 Raumes**: Die Kristallisationsrate, die
Konzentration gelöster Gase (z. B.
Sauerstoff, Stickstoff, etc.), die Kon-
zentration freier, anorganischer und
freier organischer Ionen (Elektrolyte,
Spurenelemente, Aminosäuren, Prote-
ine, etc.), die Änderungen des pH-
Werts, die Koagulationsrate und die
Befeuftungsfähigkeit beeinflussen
den Wasserfüllungszustand des Intra-
und des Extrazellulärraumes. Wasser
reagiert als Dipol sehr empfindlich auf
magnetische Felder. Diesen Effekt
macht sich die Medizin in der MRT-
Technologie mit einer Induktion von
0,5–3 T zu Nutze. Um feinere therapeu-
tische Ziele zu erreichen, werden
weitaus geringere und differenziertere
Parameter eingesetzt.

- **Induktion unterschiedlicher Span-
 nungen in einer Elektrolytlösung**:
Niederfrequente magnetische Felder
induzieren Wechselspannungen in
der Elektrolytumschaltzusammenstel-
zung der Körperflüssigkeit, der Zellen
und des Kolloids.

- **Einfluss der Depolarisation der Ze-
 llen auf den Eigenautomatismus der
 Zelle**: Variable magnetische Felder
können mit ihrem Rhythmus die elek-
trische Aktivität des Herzens, des Ge-
hirns, des gesamten Nervensystems
und aller Zellen überlagern und be-
einflussen.

- **Aktivität von piezoelektrischen und
magnetostriktiven Strukturen**: Un-
ter mechanischer Beanspruchung
(Zug, Druck oder Torsion), die senk-
recht zur Achse steht, deformieren
sich Quarzkristalle und laden sich
elektrisch auf. Die positiven und ne-
gativen Gitterbausteine werden durch

Die vorgestellten biophysikalischen Mechanismen von magnetischen Feldwirkungen induzieren einen elektromagnetischen und einen magnetodynamischen Effekt. In der Klassifizierung nach F.A. Popp sind diese Effekte auf drei Wirkmechanismen zurückzuführen:

- Bioelektromagnetismus – die Erzeugung elektromagnetischer Felder im lebenden Organismus;
- Elektromagnetobiologie – die Erzeugung von elektromagnetischen Feldern in der Umgebung von biologischen Systemen und ihr Einfluss auf diese Systeme;
- elektromagnetische Bioinformation – die Rolle von elektromagnetischen Feldern als Transportmittel für Bioinformation zwischen den einzelnen biologischen Systemen.

Die Literatur, die sich mit biophysikalischen und physiologischen Fragen der Wirkungen bzw. des Wirkungsmechanismus elektromagnetischer Felder auf biolo-
Physiologische Aspekte von Magnetfeldern?

⇒ Der Einfluss von ELF-MF soll den Energiewechseldruck der Zelle regulieren (JONES 1984), den schnellen Elektronentransport (SCHULTEN 1978) und die Reaktionen freier Radikale beschleunigen (SCHULTEN 1982).

⇒ Es konnte gezeigt werden, dass pulsierende magnetische Felder durch Beeinflussung der Sauerstoffabsorption von Hämoglobin und Cytochrom zur Intensivierung der Gewebsatmung und Sauerstoffverwertung führen. Der positive Effekt der ELF-MF wurde anhand der Zellatmung und der Sauerstoffverwertung beurteilt (SIERON ET AL. 1997).

gung der Erythropoese und die Verbesserung der Oxygenierung des Wundgewebes beobachtet werden.

⇒ Sie haben auch einen antiphlogistischen Effekt. Gleichzeitig werden destruktive Prozesse gehemmt, und die immunologische Reaktionsfähigkeit im Allgemeinen, und im zerstörten Gelenk spezifisch gesteigert (Maestroni et al. 1986).

⇒ Der analgetische Effekt beruht einerseits auf dem Gate Control Mechanismus (Paluszak et al. 2001) und beeinflusst andererseits das Verhalten und die Schmerzwahrnehmung über die Modifikation des endogenen Opioidsystems. Dieser Effekt kann durch Naloxon antagonisiert werden (Woldanska-Orońska et al. 1999).

und zentraler Nervenläsionen konnte sowohl tierexperimentell als auch klinisch gezeigt werden (PARRIS ET AL., 1994).

Die Zirbeldrüse ist eines der magnetosensitivsten Organe überhaupt. Über die Magnetstimulation induzierte Melatoninausschüttung werden sowohl zentralnervöse, vegetative als auch immunologische Mechanismen gesteuert (JACOBSON ET AL. 1994).

Die Cholinesteraseaktivität scheint angeregt zu werden. Die Serumspiegel von Ascorbinsäure, Ceruloplasmin

Aus den angeführten molekularen, biochemischen und physiologischen Daten ergeben sich zusammenfassend folgende denkbaren biologischen Wirkungen:

- Steigerung des Elektronentransportes und der ATP-Produktion in den Mitochondrien,
- Verbesserung der Sauerstoffverwertung und der Zellatmung,
- Verbesserung der Proteinsynthese, der Regeneration und Reparaturfähigkeit,
- Verbesserung der Diffusion, Modifikation des Membrantransportes, des Ionen austausches und der Membranenzymaktivität,
- Modulation der Neurotransmitterfreisetzung,
- Beschleunigung der Knochenaccretio und der Mineralisierung,
- Verbesserung der Stoffwechselverhältnisse,
- antiphlogistischer Effekt,
- analgetischer Effekt,
- Vasodilatation,

- Verbesserung der rheologischen Eigenschaften der Körperflüssigkeiten,
- regulierende Wirkung auf das vegetative Nervensystem.

Welches sind die Indikationen und die Anwendungsgebiete die sich aus dem Wirkungsmechanismus ergeben?

Die folgende Indikationsliste basiert vorwiegend auf klinischen Verlaufsstudien und auf Berichten über Beobachtungen an größeren Patientenkollektiven.
Wir haben diese klinischen Studien nicht im Sinne ihrer methodologischen Wertigkeit überprüft.

Schmerzsyndrome unterschiedlicher Ätiologien

⇒ die Schmerzintensität wurde auf einer Skala von 0–100 bewertet, wobei 100 den Schmerzgrad zu Beginn der Therapie darstellte,
⇒ das Ausmaß der periartikulären ödematösen Schwellung,
⇒ der Freiheitsgrad der Bewegung des betroffenen Gelenks,
⇒ der Allgemeinzustand und das Wohlbefinden des Patienten.

Zur Beurteilung wurden die Patienten in vier Kategorien zugeordnet:
⇒ Verbesserung verbliebene Schmerzintensität weniger als 25 % und optimale Verbesserung der anderen Kriterien
⇒ mäßige Verbesserung: verbliebene Schmerzintensität unter 50 % und gute Verbesserung der anderen Kriterien
⇒ keine Verbesserung
⇒ Verschlechterung
Verbesserung und mäßige Verbesserung wurde bei 83,1 % der Patienten der Gruppe 1, 85,9 % der Gruppe 2, und 81 % der Gruppe 3 erzielt. Keine Verbesserung gab es bei 15,3 % der Gruppe 1, 12,8 % der Gruppe 2, und 18,8 % der Gruppe 3. Patienten und Verschlimmerung bei jeweils 1,6 %, 1,3 % und 0 %. Die Therapieerfolge hielten bei 80 % der Patienten noch 6 Monate danach an. Bei wiederholter Aufnahme der Therapie sprachen die Patienten in einem mit der Ersttherapie vergleichbaren Ausmaß an. Einige der Patienten aus der ‚Verschlechterungsgruppe‘ zeigten eine vegetative Labilität und stabilisierten oder verbesserten sich nach einigen Sitzungen.

Zentrales und peripheres Nervensystem

Die Auswirkungen auf das Nervensystem werden vermutlich über die Aus-
Vegetatives Nervensystem

Erkrankungen der Weichteile und des Bindegewebes

refraktären Wundinfekten zeigten in der Kombinationstherapie mit Antibiotika einen schnelleren Temaeraturreckgang, Verbesserung der Wundheilung, des Allgemeinzustandes, eine Verringerung der Nebenwirkungen und der Hospitalisationsdauer.

Stoffwechsellähmungen und ihre Komplikationen

Eine subjektive Verbesserung der Ophthalmopathie bei der Basedow-Erkrankung wurde an 14 Patienten anhand klinischer Befunde beschrieben: bessere Augenbeweglichkeit, Rückgang des Exophthalmus und der sekundären Korneaveränderungen sowie Verbesserung des Visus und der Befunde der Augenhintergrunduntersuchungen.

Kreislauflauf und Durchblutungsstörungen

Unter der Anwendung von ELF-MF konnte bei 100 Patienten mit Angina pectoris die Anfallshäufigkeit bei 35,7 % vs. 23,6 % und die Nitroglycerin Dosis bei 53,3 % vs. 25,0 % gesenkt werden. Bei weiteren 126 Patienten verbesserte sich der Belastungstest in 66 % vs. 37 % und die Belastungsdyspnoe bei 50 % vs. 9 % (BOGOLUBOW U. SOROKINA 1983). Bei 78 Patienten mit arterieller Hypertonie konnte eine durchschnittliche Blutdrucksenkung des systolischen Wertes von 26 mmHg und des diastolischen von 13 mmHg erreicht werden. 90 % klagten weniger über Schwindel und Kopfschmerzen und 50–60 % weniger über Reizbarkeit und Erschöpfung (ORJESOWSKI ET AL. 1982).

Weitere Indikationen

- Patienten mit chronischer Sinusitis (32 Patienten) und akuten Exazerbationen (20 Patienten) wurden mit Magnetfeld-Monotherapie oder als Teil einer Komplextherapie behandelt. Beide Gruppen waren der medi-
kamentösen Alleinbehandlung im Rückgang der klinischen Symptomatik und der subjektiven Beschwerden, wie Schmerzen und Rhinorrhoe aber auch der radiologischen Befunde und des Abschwellens des Schleimhautödems überlegen (Misztel et al., 1997).

Die Verlaufs kontrolle von 120 Patienten mit chronischer Bronchitis und Asthma bronchiale zeigte eine Steigerung der Vitalkapazität von 12,5%, des maximalen Minutenvolumens von 12,4%, des FEV1 von 14,8% und des Tifacan Index von 8,6%, sowie eine Reduktion der Respirationsrate (Jekasiewa 1987).

Das schnellere Abheilen gastrointestinaler Ulcera konnte gastroskopisch und radiologisch gezeigt werden. Auch Colon irritable soll positiv beeinflusst werden. Dieser Effekt wird höchstswahrscheinlich über die Stabilisierung des vegetativen Nervensystems bewirkt.

In der Zahnmedizin werden ELF-MF bei Erkrankungen des Para- und Endodontium, bei Implantaten und zur schnelleren Wundheilung eingesetzt (Preiskorn 2001).

Zusammenfassend kann gesagt werden, dass mit pulsender ELF-MF ein sehr breites Indikationsspektrum abgedeckt werden kann, welches Erkrankungen der unterschiedlichsten Organsysteme, Ätiologie und Verlaufsformen beinhaltet. Verständlich erscheint dies nur, wenn man die oben beschriebenen sehr unterschiedlichen Angriffsebenen der ELF-MF in Betracht zieht.

- Orthopädie, Erkrankungen des Bewegungsapparates in allen Aspekten (Knochen, Gelenke, Frakturen, Osteoporose, Osteopenie),
- Schmerzsyndrome fast jeglicher Ätiologie,
- chronische Entzündungen,
- Erkrankungen der Haut und des Bindegewebes (Wunden, Ulcerationen),
- Regenerations-, Reparatur- und Wachstumsstörungen,
- Ischämien und Durchblutungsstörungen,
- neurologische und neurodegenerative Erkrankungen,
- Stoffwechselstörungen,
- vegetative Dysfunktion,
- Energiemangelzustände und chronisches Müdigkeitssyndrom,
- Prothetik, Implantologie, Zahnmedizin.

Nebenwirkungen

vorübergehend und treten bei vegetativer Labilität oder Schwäche auf. Hier sollten sowohl die Intensität als auch die Häufigkeit der Anwendung reduziert werden. Schlafstörungen können in 3 % der Fälle auftreten. Es wird allgemein geraten eine Magnetfeldbehandlung nicht am Abend nach 17.00 Uhr durchzuführen. Im Falle der Magnetostimulation wurden allgemeine Müdigkeit, Ohrensausen, pulsierende Empfindungen im Kopf oder Körper, Hautjuckreiz oder vorübergehende Tachykardie beschrieben. Wir müssen uns bewusst sein, dass die Magnetfeldbehandlung eine Reiztherapie ist und es auch hier – wie bei allen Reiztherapien – zu Erstverschlimmerungen kommen kann. Diese sind erwünscht, sollten nicht als Nebenwirkung verstanden oder interpretiert und vor allem nicht unterdrückt werden.

Welches sind die realen und die potenziellen Kontraindikationen, die sich aus dem Wirkungsmechanismus ergeben?

Laut Straburzynski (Straburzynski u., Straburzynska-Lupa 2000) ist die ELF-MF-Therapie bei folgenden Erkrankungen kontraindiziert:

⇒ gastrointestinale Blutungen,
⇒ Schwangerschaft,
⇒ Diabetes mellitus Typ 1,
⇒ neoplastische Erkrankungen,
⇒ fortgeschrittene Herz-Kreislauffürkung
⇒ Tuberkulose und schwere Infektionskrankheiten,
⇒ Hyperthyreoidismus,
⇒ elektrische Implantate (z. B. Herzschockmacher),
⇒ Epilepsie.

⇒ Schwangerschaft: Bisher konnte keine Teratogenität (Robert 1996) nachgewiesen werden. Da jedoch nicht genügend Erfahrungen vorliegen, sollte die Therapie während der Schwangerschaft nicht angewendet werden.
Diabetes Typ 1: Typ 1 Diabetes sollte keine Kontraindikation darstellen, was die Insulinsekretion und die Glukoseverwertung des Gewebes anbelangt. Experimentelle Daten zeigen sowohl eine Hemmung als auch eine Stimulation der Insulinfreisetzung. Da die Gefahr der Hypoglykämie besteht, sollten diese Patienten nur von erfahrene- ren Therapeuten behandelt werden. Es ist allerdings auch zu berücksichtigen, dass diabetische Spätsfolgen und Komplikationen wie Angiopathie, Polyneuropathie und Retinopathie verzögert oder zum Teil rückgängig gemacht werden können. Daher sind weitere systematische Untersuchungen dringend notwendig.

Elektrische Implantate (z. B. Herzschrittmacher): Vom physikalischen Standpunkt, haben die Felder, die in der Magnetostimulation eingesetzt werden, eine minimale Wahrscheinlichkeit einen Einfluss auf Implantate oder Herzschrittmacher auszuüben. Trotzdem würden wir diese als relative Kontraindikation einstufen. Ferromagnetische Implantate (Eisen, Stahl), können das induzierte magnetische Feld verändern oder ableiten und daher zu Effektausrichtungen führen. Bei paramagnetischen Implantaten besteht diese Gefahr nicht.

Aus eigenen Erfahrungen können wir sagen, dass elektrosensible Patienten mit Tachykardie, Unruhe, Schweissausbrüchen und anderen vegetativen Symptomen reagieren. Bekannte Elektrosensibilität werten wir als Kontraindikation.

Es ist darauf hinzuweisen, dass alle angegebenen Untersuchungen mit unterschiedlichen Geräten und unterschiedlichen elektromagnetischen Parametern gemacht wurden. Vergleichsuntersuchungen, in denen Geräte oder einzelne Parameter systematisch im Hinblick auf Wirksamkeit, Indikationen, Nebenwirkungen und Kontraindikationen miteinander verglichen wurden, liegen unseres Wissens nicht vor.

Praktische Anwendung, medizinökonomische Überlegungen und Wirtschaftlichkeit

Obwohl bislang keine konkreten Dosierungsstudien vorliegen, haben alle bisherigen Erfahrungen gezeigt, dass die besten und nachhaltigsten Ergebnisse durch folgendes Anwendungsprotokoll erzielt werden:

Im akuten Krankheitsverlauf oder während der Exacerbation eines chronischen Krankheitsbildes sollte die Magnet-

Schlussbemerkungen
Eine zunehmende Anzahl von Beobachtungen zeigen, dass die Untersuchung der Wirkung elektromagnetischer und magnetischer Felder auf den lebenden Organismus als außerordentlich spannendes und zukunftsweisendes Forschungsgebiet erscheint, welches fachübergreifende naturwissenschaftliche Zusammenarbeit fordert. Die Kenntnisse über die Wirkung magnetischer und elektromagnetischer Felder auf biologische Systeme nehmen in den letzten Jahren kontinuierlich zu, wenngleich die klinischen Erfahrungs-

Literatur

Blackmann CF, Benane SG, House DE, Joines WT: Effects of ELF (1-120 Hz) and modulated (50 Hz) RF fields: the influx of calcium ions from brain tissue in vitro. Bioelectromagnetics 6:1 (1985)

KASPRZAK WP, KASPRZAK PD, MAŃKOWSKA A: Pulsing magnetic and cisionie tektisze w normotomików i w chorebie naakwiosciowej. (Pulsating magnetic field and its influence on patients having normal and raised blood pressure) Bial. Pol. 39:95-100 (1997)

YOSHIZAWA H, TSUCHIYA T, MUZOE H ET AL.: No effect of extremely low-frequency magnetic field observed on cell growth or initial response of cell proliferation in human cancer cell lines. Bioelectromagnetics 23(5):355–368 (2002)
Zusammenfassung